Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated K+ channels.

نویسندگان

  • Andreas T Schaefer
  • Moritz Helmstaedter
  • Bert Sakmann
  • Alon Korngreen
چکیده

To understand functions of a single neuron, such as propagation and generation of synaptic or action potentials, a detailed description of the kinetics and distribution of the underlying ionic conductances is essential. In voltage-clamp experiments, incomplete space clamp distorts the recorded currents, rendering accurate analysis impossible. Here, we present a simple numerical algorithm that corrects such distortions. The method performs a stepwise approximation of the conductance density at the site of a local voltage clamp. This is achieved by estimating membrane conductances in a simulation that yields simulated clamp currents, which are then fitted to the distorted recordings from the non-space-clamped structure, relying on accurately reconstructed cell morphology and experimentally determined passive properties. The method enabled accurate retrieval of the local densities, kinetics, and density gradients of somatic and dendritic channels. Neither the addition of noise nor variation of passive parameters significantly reduced the performance of the correction algorithm. The correction method was applied to two-electrode voltage-clamp recordings of K(+) currents from the apical dendrite of layer 5 neocortical pyramidal neurons. The generality and robustness of the algorithm make it a useful tool for voltage-clamp analysis of voltage-gated currents in structures of any morphology that is amenable to the voltage-clamp technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of electrical coupling on ionic current and synaptic potential measurements.

Recent studies have found electrical coupling to be more ubiquitous than previously thought, and coupling through gap junctions is known to play a crucial role in neuronal function and network output. In particular, current spread through gap junctions may affect the activation of voltage-dependent conductances as well as chemical synaptic release. Using voltage-clamp recordings of two strongly...

متن کامل

Non-voltage-gated calcium channels in snail heart ventricle cells.

1. Two recently identified channel types in Lymnaea stagnalis heart muscle cells were shown to conduct Na+ in the absence of extracellular Ca2+. They did not appear to be 'voltage-gated' as they were not activated by voltage. Also, they remained active over a wide range of membrane potentials. However, they were weakly 'voltage-sensitive' as their activity usually tended to increase with depola...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

The Blocking Activity of Different Toxins against Potassium Channels Kv3.4 in RLE Cells

Background: K+ channel toxins are essential tools for the first purifications, analysis of subunit structures and brain localization of voltage-gated K+ (Kv) channels. The effects of a lot of toxins on Kv are not fully known. Methods: Using whole-cell patch clamping technique the action of a series of toxins on Kv3.4 current in rat liver cells with expressed Kv3.4 channels (RLE) cloned cells wa...

متن کامل

Electrostatic determinants of voltage sensitivity in ion channels: Simulations of sliding-helix mechanisms

Electrical signaling via voltage-gated ion channels depends upon the function of the voltage sensor (VS), identified with the S1–S4 domain of voltage-gated K channels. Here we investigate some physical aspects of the sliding-helix model of the VS using simulations based on VS charges, linear dielectrics and whole-body motion. Model electrostatics in voltage-clamped boundary conditions are solve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 84 6  شماره 

صفحات  -

تاریخ انتشار 2003